Given a 1-indexed array of integers numbers that is already sorted in non-decreasing order, find two numbers such that they add up to a specific target number. Let these two numbers be numbers[index1] and numbers[index2] where 1 <= index1 < index2 <= numbers.length.
Return the indices of the two numbers, index1 and index2, added by one as an integer array [index1, index2] of length 2.
The tests are generated such that there is exactly one solution. You may not use the same element twice.
Your solution must use only constant extra space.
Example 1:
1 2 3
Input: numbers = [2,7,11,15], target =9 Output: [1,2] Explanation: The sum of 2 and 7is9. Therefore, index1 =1, index2 =2. Wereturn [1, 2].
Example 2:
1 2 3
Input: numbers = [2,3,4], target =6 Output: [1,3] Explanation: The sum of 2 and 4is6. Therefore index1 =1, index2 =3. Wereturn [1, 3].
Example 3:
1 2 3
Input: numbers = [-1,0], target =-1 Output: [1,2] Explanation: The sum of -1 and 0is-1. Therefore index1 =1, index2 =2. Wereturn [1, 2].
classSolution{ functwoSum(_numbers: [Int], _target: Int) -> [Int] { var i =0; var j = numbers.count -1; while (i < j) { let small = numbers[i] let big = numbers[j] if small + big == target { break } elseif small + big < target { i +=1 } else { j -=1 } } return [i+1, j+1] } }
classSolution{ functwoSum(_numbers: [Int], _target: Int) -> [Int] { for i in0..<numbers.count { let num = numbers[i] let tmp = target - num // 然后使用 binarySearch 查找有没有等于 tmp 的元素 var l = i +1 var r = numbers.count -1 var middle =0 while (l <= r) { middle = l + (r - l) /2 if numbers[middle] == tmp { return [i+1, middle+1] } elseif numbers[middle] < tmp { l +=1 } else { r -=1 } } } return [] } }